A BRANCH-AND-PRUNE METHOD FOR GLOBAL OPTIMIZATION The Univariate Case
نویسندگان
چکیده
We present a branch-and-prune algorithm for univariate optimization. Pruning is achieved by using first order information of the objective function by means of an interval evaluation of the derivative over the current interval. First order information aids fourfold. Firstly, to check monotonicity. Secondly, to determine optimal centers which, along with the mean value form, are used to improve the enclosure of the function range. Thirdly, to prune the search interval using the current upper bound of the global minimum, and finally, to apply a more sophisticated splitting strategy. Results of numerical experiments are also presented.
منابع مشابه
Optimal centers in branch-and-prune algorithms for univariate global optimization
We present an interval branch-and-prune algorithm for computing verified enclosures for the global minimum and all global minimizers of univariate functions subject to bound constraints. The algorithm works within the branch-and-bound framework and uses first order information of the objective function. In this context, we investigate valuable properties of the optimal center of a mean value fo...
متن کاملOptimal Centers in Branch-and-Prune Algorithms for Global Optimization
We present an interval branch-and-prune algorithm for computing verified enclosures for the global minimum and all global minimizers of univariate functions subject to bound constraints. The algorithm works within the branch-and-bound framework and uses first order information of the objective function. In this context, we investigate valuable properties of the optimal center of a mean value fo...
متن کاملAn Interval Branch-and-Bound Algorithm for Global Optimization using Pruning Steps
We present a new method for computing verified enclosures for the global minimum value and all global minimum points of univariate functions subject to bound constrains. The method works within the branch and bound framework and incorporates inner and outer pruning steps by using first order information of the objective function by means of an interval evaluation of the derivative over the curr...
متن کاملMultiple Start Branch and Prune Filtering Algorithm for Nonconvex Optimization
Automatic control systems, electronic circuit design, image registration, SLAM and several other engineering problems all require nonconvex optimization. Many approaches have been developed to carry out such nonconvex optimization, but they suffer drawbacks including large computation time, require tuning of multiple unintuitive parameters and are unable to find multiple local/global minima. In...
متن کاملThe cluster problem in multivariate global optimization
We consider branch and bound methods for enclosing all unconstrained global minimizers of a nonconvex nonlinear twice-continuously differentiable objective function. In particular, we consider bounds obtained with interval arithmetic, with the “midpoint test,” but no acceleration procedures. Unless the lower bound is exact, the algorithm without acceleration procedures in general gives an undes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000